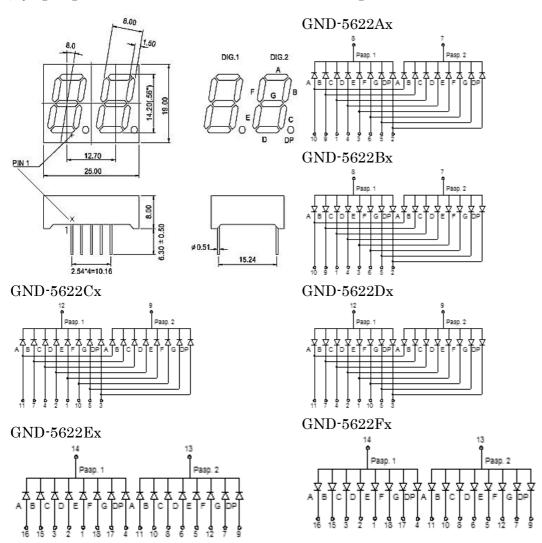

Четырехразрядные светодиодные дисплеи GNQ-5643

Тип	Цвет		Общий катод или анод	Доминантная длина волны (nm)	Vf(v) тип, ном.	If (mA)	Интенсивность свечения сегмента (mcd)	
GNQ-5643AE	GaAsP/GaP	Hi.effi красный		635	2.0	20	мин. 9	тип. 12
GNQ-5643AG	GaP	зеленый		565	2.1	20	8	11
GNQ-5643AY	GaAsP/GaP	желтый		585	2.0	20	9	12
GNQ-5643AS	GaAIAs	Super красный	общий катод	660	1.8	20	10	13
GNQ-5643AD	GaAIAs	Ultra красный		660	1.8	20	25	30
GNQ-5643AUE	AIGalnP	Ultra красный		625	2.0	20	30	35
GNQ-5643AUY	AIGalnP	Ultra желтый		590	2.0	20	30	35
GNQ-5643BE	GaAsP/GaP	Hi.effi красный		635	2.0	20	9	12
GNQ-5643BG	GaP	зеленый		565	2.1	20	8	11
GNQ-5643BY	GaAsP/GaP	желтый		585	2.0	20	9	12
GNQ-5643BS	GaAIAs	Super красный	общий анод	660	1.8	20	10	13
GNQ-5643BD	GaAIAs	Ultra красный		660	1.8	20	25	30
GNQ-5643BUE	AIGalnP	Ultra красный		625	2.0	20	30	35
GNQ-5643BUY	AIGalnP	Ultra желтый		590	2.0	20	30	35

Общая кодировка обозначений светодиодных дисплеев:


GN	\mathbf{S}	-	180	1	1	A	EG	-	1	1	-	1
1	2		3	4	5	6	7		8	9	-	10

- 1. Изготовитель: GN
 - 2. Разрядность цифр: S--один разряд, D--два разряда, T--три разряда, Q--четырех и более разрядный дисплей.
 - 3. Высота цифр: 150 -- 1,5", 180 -- 1.80", 501 -- 0,5", 801 -- 0,8" и т.д.
 - 4. Количество цифр.
 - 5. Номер модели.
 - 6. А, С, Е -- с общим катодом; В, D, F -- с общим анодом; Z универсальные.
 - 7. Цвет (см. таблицу.):

Цвет	Материал	Длина волны, nm
Н: Красный	GaP/GaP	700
S: Ярко-красный	GaAlAs/GaAs SH	600
D: Супер красный	GaAlAs/GaAs DH	660
UR: Ультра красный	GaAlAs/GaAlAs DDH	660
UHR: Ультра красный	AlGaInP	640
Е: Оранжевый	GaAsP/GaP	635
UE: Ярко-оранжевый	AlGaInP	630
Ү: Желтый	GaAsP/GaP	585
UY: Ярко-желтый	AlGaInP	590
G: Зеленый	GaP/GaP	570
UG: Ярко-зеленый	AlGaInP	574
PG: Чистый зеленый	AlGaInP	525
BG: Сине-зеленый	AlGaInP	505
В: Синий	GaN/SiC	430
UB: Ярко-синий	InGaN/SiC	470
V: UV	InGaN/SiC	405
W: Белый		
EG: Оранжевый+Зеленый (двухцветный)		
SG: Ярко-красный+Зеленый (двухцветный)		
RGB: Полноцветный		

- 8. Цвет поверхности (корпуса): 0 -- белый, 1 -- черный, 2 -- серый, 3 -- красный.
- 9. Цвет поверхности светящегося сегмента: 0 -- прозрачный, 1 -- белый матовый, 2 -- красный матовый, 3 -- зеленый матовый
- 10. Дополнительно: -Lxx -- длина выводов, -В -- десятичная точка с обоих сторон, -N -- без десятичной точки

Двухразрядные светодиодные индикаторы GND-5622

Наименование Цвет				Подключение	Прямое падение напряжения,	Прямой ток, мА	Сила света, мккд (при I _F =10 мА)	
					В		Мин.	Тип.
GND-5622AS	Красный	660 нм	GaAlS	Общий катод	1,8	10 20	850	2100
GND-5622BS	Красный	660 нм	GaAlS	Общий анод	1,8	10 20	850	2100
GND-5622CS	Красный	660 нм	GaAlS	Общий катод	1,8	10 20	850	2100
GND-5622DS	Красный	660 нм	GaAlS	Общий анод	1,8	10 20	850	2100
GND-5622ES	Красный	660 нм	GaAlS	Общий катод	1,8	10 20	850	2100
GND-5622FS	Красный	660 нм	GaAlS	Общий анод	1,8	10 20	850	2100
GND-5622AD	Красный	660 нм	GaAlS	Общий катод	1,8	10 20	2550	6200
GND-5622BD	Красный	660 нм	GaAlS	Общий анод	1,8	10 20	2550	6200
GND-5622CD	Красный	660 нм	GaAlS	Общий катод	1,8	10 20	2550	6200
GND-5622DD	Красный	660 нм	GaAlS	Общий анод	1,8	10 20	2550	6200
GND-5622ED	Красный	660 нм	GaAlS	Общий катод	1,8	10 20	2550	6200
GND-5622FD	Красный	660 нм	GaAlS	Общий анод	1,8	10 20	2550	6200
GND-5622AE	Красный	$635 {\rm нм}$	GaAsP/GaP	Общий катод	2,0	10 20	800	2000
GND-5622BE	Красный	$635 {\rm HM}$	GaAsP/GaP	Общий анод	2,0	10 20	800	2000
GND-5622CE	Красный	$635 {\rm нм}$	GaAsP/GaP	Общий катод	2,0	10 20	800	2000
GND-5622DE	Красный	$635 {\rm HM}$	GaAsP/GaP	Общий анод	2,0	10 20	800	2000
GND-5622EE	Красный	$635 {\rm нм}$	GaAsP/GaP	Общий катод	2,0	10 20	800	2000
GND-5622FE	Красный	$635 {\rm HM}$	GaAsP/GaP	Общий анод	2,0	10 20	800	2000
GND-5622AY	Желтый	585 нм	GaAsP/GaP	Общий катод	2,1	10 20	800	2000
GND-5622BY	Желтый	585 нм	GaAsP/GaP	Общий анод	2,1	10 20	800	2000
GND-5622CY	Желтый	585 нм	GaAsP/GaP	Общий катод	2,1	10 20	800	2000
GND-5622DY	Желтый	585 нм	GaAsP/GaP	Общий анод	2,1	10 20	800	2000
GND-5622EY	Желтый	585 нм	GaAsP/GaP	Общий катод	2,1	10 20	800	2000
GND-5622FY	Желтый	585 нм	GaAsP/GaP	Общий анод	2,1	10 20	800	2000
GND-5622AG	Зеленый	$565 {\rm нм}$	GaP	Общий катод	2,1	10 20	800	2000
GND-5622BG	Зеленый	$565 { m HM}$	GaP	Общий анод	2,1	10 20	800	2000
GND-5622CG	Зеленый	565 нм	GaP	Общий катод	2,1	10 20	800	2000
GND-5622DG	Зеленый	565 нм	GaP	Общий анод	2,1	10 20	800	2000
GND-5622EG	Зеленый	$565 {\rm нм}$	GaP	Общий катод	2,1	10 20	800	2000
GND-5622FG	Зеленый	$565 {\rm нм}$	GaP	Общий анод	2,1	10 20	800	2000

ИВЛ	I1-7/5	ИВЛ 2-7/5									
1	Катод (накал)	1 (23)	Катод (накал)								
2	к – точка (верх)	2(22)	Сетка 5-го разряда								
3	Сетка 5-го разряда	3	к - точка								
4	Элементы д	4	Элементы д								
5	Элементы f	5	Элементы е								
6	Сетка 4-го разряда	6(21)	Сетка 4-го разряда								
7	Элементы е	7	Элементы с								
8	Элементы d	8(20)	Сетка 3-го разряда								
9	Сетка 3-го разряда	9	1 - точка								
10	L – точка (низ)	10	Элементы d								
11	Сетка 2-го разряда	11(19)	Сетка 2-го разряда								
12	Элементы с	12	Элементы b								
13	Элементы b	13	Элементы f								
14	Сетка 1-го разряда	14	Элементы а								
15	Элементы а	15(18)	Сетка 1 -го разряда								
16	Катод (накал)	6(17)	Катод (накал)								
		ивл									
	_a										
f	g b	k •									
е	c	<i>!</i>									
:	5 разр. 4 разр.	3 разр.	2 разр. 1 разр.								
ИВЛ	ИВЛ1-7/5 (накал 5В, 120мА; анод, сетка27В, 12мА).										

ИНДИКАТОР ТЛЕЮЩЕГО РАЗРЯДА «ИН-12А»

Цифровой индикатор тлеющего разряда имеет десять катодов в виде арабских цифр от 0 до 9.

Применяется для визуальной индикации цифровой информации электрического сигнала.

Индикация — через купол баллона.

Цвет свечения — оранжево-красный.

Наполнение — неоновое.

Оформление — стеклянное, без цоколя.

Высота цифр 18 мм.

Выводы электродов:

1—анод; 2— цифра 0; 3— цифра 9; 4 — цифра 8; б— цифра 7; 6 — цифра 6; 7 —цифра 5; 8 — цифра 4; 9 — цифра 3; 10—цифра 2; 11 — цифра 1; 12, 13, 14 — не подключены.

Основные параметры

Напряжение источника питания, не менее – 200V

Напряжение зажигания, не более – 170V

Ток индикации, не более - 2,5 мА

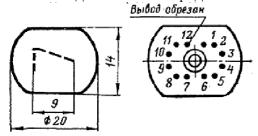
Рабочий ток постоянный, не более - 3 мА

Средний ток (пульсирующий), не более - 2 мА

Температура окружающей среды - От —60 до +70 °C

Время запаздывания зажигания, не более - 1с

ИНДИКАТОР ТЛЕЮЩЕГО РАЗРЯДА «ИН-17»


Индикатор тлеющего разряда ИИ-17 предназначен для визуальной индикации цифровых показаний, в электрических и радиотехнических устройствах.

Катоды выполнены в форме арабских цифр 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 высотой 9 мм.

Индикация осуществляется через купол баллона.

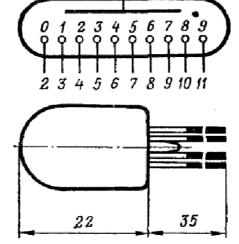
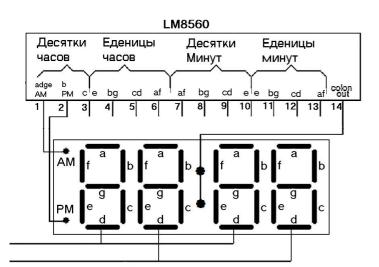
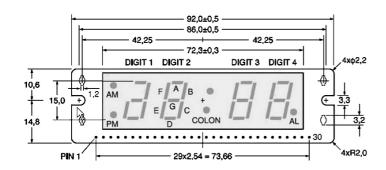
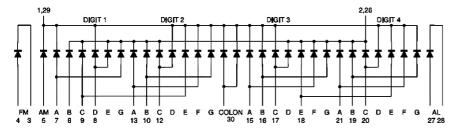

Оформление — стеклянное, миниатюрное, с гибкими выводами. Масса 7 г.

Схема соединения электродов с выводами


Счет выводов ведется по часовой стрелке от ключа, за который принимается обрезанный вывод.


Обозначение	Наименование электрода
вывода	танменование влентрода
1	Анод
1 2 3	Катод «0»
3	Катод «1»
<u>4</u> 5	Катод «2»
5	Катод "3"
6	Катод «4»
7	Катод «о»
8	Катод "6"
9	Катод «7».
10	Катод «8»
11	Катод «9»
12	Вывод обрезан



Основные электрические параметры

Наименование параметра,	Норма		
единица измерения	не менее	не более	
Напряжение возникновения разряда, V		170	
Напряжение поддержания разряда, V	_	170	
Ток индикации мА	_	1,5	
Яркость кд/м2	100	_	
Угол обзора, град.	±20	_	
Время готовности (время запаздывания возникновения разряда), сек.	_	1	

SC8560

1	2	3	4	5	6	7	8	9	10	11	12	13	14
7.3	5.8	11.8	11.8	7.2	5.6	11.8	7.4	11.9	11.9	5. 6	12	12	
15	16	17	18	19	20	21	22	23	24	25	26	27	28
12	3.4	11.8	0.01	0.01	0	0.01	0.01	0.01	0.01	8.2	0.01	12	0.01
}	DIODE 0.01 0.0												